Power System State Estimation using Synchrophasor Measurements

Djalma M. Falcão
Summary

- **Power system dynamics**
- **Data acquisition systems**
 - SCADA
 - PMU
- **Static State Estimation**
 - SCADA based
 - PMU based
 - Hybrid
- **Dynamic State Estimation**
 - Dynamic estimation of the quasi-\textit{static state}
 - Dynamic estimation of the \textit{electromechanical state}
State Estimation

- Find the optimal estimate of a stochastic dynamic system expected state consistent with both observations and the system dynamic model.
Dynamic Models

- **Discrete Linear Time-Invariant Model**

\[x_k = Ax_{k-1} + Bu_{k-1} + w_{k-1} \]
\[z_k = Hx_k + v_k \]
\[w_k \sim (0, Q_k) \]
\[v_k \sim (0, R_k) \]

- **Discrete Nonlinear Time-Invariant Model**

\[x_k = f(x_{k-1}, u_{k-1}, w_{k-1}) \]
\[z_k = h(x_k) + v_k \]
\[w_k \sim (0, Q_k) \]
\[v_k \sim (0, R_k) \]

- \(x_k \): state vector
- \(u_k \): control vector
- \(z_k \): measurement vector
- \(w_k \): system noise vector (represents uncertainty in the dynamic models)
- \(v_k \): measurement error vector

- \(Q_k \): noise covariance matrix
- \(R_k \): measurement error covariance matrix
Slow or *Quasi* Static Dynamics

- The state variables change very little between sampling times
- State variables (**static state**): \(x_k = \begin{bmatrix} V_k & \theta_k \end{bmatrix} \)
- The system dynamics is due to
 - Load variation
 - Generation variation (wind, solar)
 - Slow controllers (LTC, etc.)
- Can be predict by short term load forecasting and power flow models: closed form is impractical
- State estimation application
 - Dynamic model is neglected
 - State estimates at relatively large intervals (minutes)
 - Mathematical Model

 \[
 z_k = h(x_k) + v_k \\
 v_k \sim (0, R_k)
 \]
 - Usually only one measurement snapshot (\(Z_k \)) processed at a time
Fast Dynamics

- Electromechanical transients
- Horizons
 - Short term (few seconds): movement of rotors and fast controllers action
 - Long term (several second to minutes): includes prime movers slow dynamics and slow controllers

- State variables: \(x_k = [\delta_k \omega_k \cdots] \)

- Elaborated models available for machines, controllers, etc.

- State estimation application
 - Made possible owing to the availability of synchrophasor measurements
 - Practical application not yet clearly defined
 - Mathematical Model

\[
\begin{align*}
x_k &= f(x_{k-1}, u_{k-1}, w_{k-1}) \\
z_k &= h(x_k) + v_k \\
w_k &\sim (0, Q_k) \\
v_k &\sim (0, R_k)
\end{align*}
\]
Data Acquisition Systems

- **SCADA**
 - Components
 - Man-Machine Interface
 - Computational Systems
 - Remote Terminal Units
 - Sensors
 - Telecommunication System
 - Functions
 - Data acquisition and display
 - Remote actuation
 - Poll Interval: 2-4 seconds
 - No data synchronization: skew

- **PMU Network**
 - PMU: Phasor Measurement Units (frequency, voltage and current positive sequence phasors)
 - Time synchronization
 - PDC Phasor Data Concentrators
 - Substation level
 - Regional level
 - Central PDC
 - LAN and Wans: usually private owned
 - 10 to 60 phasors per second

PMU Data Delay

SCADA Hypothetical Example

- 2 seconds poll interval

![Diagram showing a power system with V_t and \(\delta_t \)]
PMU Hypothetical Example

- **30 samples/sec**

![Graph showing phase angle δₜ over time](image)

<table>
<thead>
<tr>
<th>Phasor Reporting Rate (Hz)</th>
<th>Cut-off Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Source: Phadke & Thorp book (2008)
Power System State Estimation

- **Estimation of the Quasi-Static State**
 - Usually referred to as **Static State Estimation**
 - State variables: steady state nodal voltages \((V, \theta)\)
 - Measurements: SCADA + PMU
 - Applications
 - Unit commitment and economic dispatch
 - Voltage and loading monitoring
 - Initial conditions for on-line VSA and DSA

- **Estimation of the Electromechanical State**
 - Truly **Dynamic State Estimation**
 - State Variables: generator/controllers variables
 - \((\delta, \omega, E_{fd}, \ldots)\)
 - Measurements: PMU only
 - Applications:
 - Out-of-step protection
 - Generator model identification
 - Other?
Static State Estimation

- **Conventional power system state estimation**
 - Processing one snapshot of SCADA data at a time
 - Rate of processing: minutes (30 – 90 seconds)
 - Large research effort in the last ~40 years
 - Introduced by F. Schweppe (1970s)
 - Summarized in books: Monticelli, Abur & Expósito
 - Measurement gross errors (bad data) and topology errors are still not completely solved problems (practical importance?)
 - Largely used by industry but with only reasonable performance

- **Dynamic state estimation of the static state**
 - Attempts to use past information to improve present estimation through state forecasting
 - Processing sequences of snapshots of SCADA data
 - Rate of processing: seconds

- **Static State Estimation including PMU Measurements**

 Can be solved at SCADA rate or faster by parallelization and other improvements

 Interesting academic approaches but no practical interest

 Evolving technologies Transition stage
Static State Estimation with PMU Data only

PMU Data
- Data: nodal voltage and branch current phasors
- Linear relationship with state variables (nodal voltage phasors)

Measurement Model

\[z = B V + v \]
\[v \sim (0, R) \]

\[
\begin{bmatrix}
Z_v \\
Z_I
\end{bmatrix} =
\begin{bmatrix}
I & 0 \\
Y_{IM} & Y_{IC}
\end{bmatrix}
\begin{bmatrix}
V_M \\
V_C
\end{bmatrix} +
\begin{bmatrix}
v_I
\end{bmatrix}
\]

Estimator (Linear WLS)

\[
\hat{V} = [B^H R^{-1} B]^{-1} B^H R^{-1} z
\]

Requirements
- PMUs installed in about 1/3 network nodes
- Adequate for local estimation
Static State Estimation with SCADA and PMU Data

- **Data**
 - Active and reactive power injections and flows, voltage magnitudes and **phase angles, branch currents**
 - Non-linear relationship with state variables (nodal voltage magnitudes and phase angles)

- **Measurement Model**
 \[z = h(x) + v \]
 \[v \sim (0, R) \]

- **Estimator (Non-linear WLS)**
 \[x^{i+1} = x^i + [H(x^i)^T R^{-1} H(x^i)]^{-1} H(x^i)^T R^{-1} z \]

- **Difficulties**
 - Inclusion of current and phase angle measurements
 - Phase angle reference
 - Synchronization of SCADA and PMU data
 - **Software reprogramming**
Compromise Solution

State Estimation Combination

Conventional State Estimator

Linear State Estimator

Real Time Data Base
Static Data Base
PMU Data Base

SCADA

PDCs and Communication Network

RTU₁
PMU₁
RTU₁
PMU₁
RTU₁
PMU₁

Control Center
Hybrid State Estimation

- Also referred to as estimator with a priori information
- Combines the state estimation obtained a priori from a conventional state estimator with data from PMU
- Mathematical Model

\[
\begin{bmatrix}
\hat{V}_{SE} \\
Z_{PMU}
\end{bmatrix} = \begin{bmatrix} I \\ L \end{bmatrix} V + \begin{bmatrix} v_{SE} \\ v_{PMU} \end{bmatrix}
\]

\[v_{SE} \sim \begin{pmatrix} 0, H^T(\hat{V}_{SE}) \end{pmatrix} R^{-1} H(\hat{V}_{SE})\]

\[v_{PMU} \sim (0, Q_{PMU})\]
Hybrid State Estimation (cont.)

- There is no need for global observability of the PMU network
- Only observable state by the PMU network will be improved by the inclusion of this kind of information
- Useful to use PMU data to observe parts of the system (line, transformers, etc.) while keeping consistency with the SCADA estimator results
Fusion of Estimates

- Combines the state estimation obtained from the SCADA state estimator with the estimation obtained from the PMU linear estimator

Mathematical Model

- SCADA estimator results
 State estimation: \hat{x}_{SCA}
 Error covariance: $G_{SCA} = H^T(\hat{x}_{SCA}) R^{-1} H(\hat{x}_{SCA})$

- PMU linear estimator results
 State estimation: \hat{x}_{PMU}
 Error covariance: $G_{SCA} = B^H R^{-1} B$

- Fusion estimation
 $$\hat{x}^* = [G_{SCA} + G_{PMU}]^{-1} (G_{SCA}\hat{x}_{SCA} + G_{PMU}\hat{x}_{PMU})$$
Comparison

- Simulated experiments indicate that both the Hybrid State Estimation (HSE) and the Fusion of Estimates (FE) present an adequate performance in terms of the accuracy of estimates.

- The FE estimator requires the use of pseudo-measurements in the case of lack of observability in the PMU measurement system.

- Gross error detection and identification in the SCADA estimator should be performed as usual.

- The same procedures for gross error detection and identification can be applied to the HSE and FE estimators.
Dynamic State Estimation
Short Term Electromechanical Dynamics

- **History**
 - Few attempts in the past owing to the lack of adequate wide area data acquisition system
 - Some early works
 - Chang, Taranto, and Chow (1995)

- **PMU Availability Opened New Possibilities**
 - Smoothing: model identification
 - Filtering: better estimate of generator and controller internal variables
 - Prediction: security actions and protection
Kalman Filter

- Operates recursively on streams of noisy input data to produce a statistically optimal estimate of the underlying system state
- Two-step process
 - **Prediction Step**: produces estimates of the current state variables, along with their uncertainties
 - **Correction Step**: updated the estimate of the current state variables using a weighted average, with more weight being given to estimates with higher certainty

Kalman Filter (Linear Case)

Time Update ("Predict")

1. Project the state ahead
 \[\hat{x}_k^- = A\hat{x}_{k-1} + Bu_{k-1} \]
2. Project the error covariance ahead
 \[P_k^- = AP_{k-1}A^T + Q \]

Measurement Update ("Correct")

1. Compute the Kalman gain
 \[K_k = P_k^-H^T(HP_k^-H^T + R)^{-1} \]
2. Update estimate with measurement \(z_k \)
 \[\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-) \]
3. Update the error covariance
 \[P_k = (I - K_kH)P_k^- \]

Initial estimates for \(\hat{x}_{k-1} \) and \(P_{k-1} \)

Source: Welch and Bishop
Extended Kalman Filter (EKF)

Time Update ("Predict")

1. Project the state ahead
 \[\hat{x}^-_k = f(\hat{x}_{k-1}, u_{k-1}, 0) \]

2. Project the error covariance ahead
 \[P^-_k = A_k P_{k-1} A_k^T + W_k Q_{k-1} W_k^T \]

Measurement Update ("Correct")

1. Compute the Kalman gain
 \[K_k = P^-_k H_k^T (H_k P^-_k H_k^T + V_k R_k V_k^T)^{-1} \]

2. Update estimate with measurement \(z_k \)
 \[\hat{x}_k = \hat{x}_k^- + K_k (z_k - h(\hat{x}_k^-, 0)) \]

3. Update the error covariance
 \[P_k = (I - K_k H_k) P_k^- \]

Initial estimates for \(\hat{x}_{k-1} \) and \(P_{k-1} \)

Source: Welch and Bishop

\[A_{k-1} = \left. \frac{\partial f}{\partial x} \right|_{\hat{x}_{k-1}} \]
\[W_{k-1} = \left. \frac{\partial f}{\partial w} \right|_{\hat{x}_{k-1}} \]
\[H_k = \left. \frac{\partial h}{\partial x} \right|_{\hat{x}_k^-} \]
\[V_k = \left. \frac{\partial h}{\partial v} \right|_{\hat{x}_k^-} \]
Example: SMIB

- **Generator Model**
 - Classical model: constant voltage behind direct axis transient reactance

- **State Space Model**

 \[
 \begin{bmatrix}
 \delta_k \\
 \omega_k
 \end{bmatrix} =
 \begin{bmatrix}
 \delta_{k-1} + (\omega_{k-1} - \omega_0) \Delta t \\
 \omega_{k-1} + \frac{\omega_0}{2H} \left(P_m - \frac{|E||V_{\infty}|}{x'_d + x_T + x_L} \sin \delta_{k-1} \right) \Delta t
 \end{bmatrix} + [w_{k-1}]
 \]

- **Measurement Model**

 \[
 \begin{bmatrix}
 |V_k| \\
 \theta_k
 \end{bmatrix} = h(\cdot) + v_k
 \]

 \[
 |V_k| \angle \theta_k = \frac{X_LE + X'_d V_{\infty}}{X_L + X'_d}
 \]

 \[
 E_k = |E_k| \angle \delta_k \\
 V_k = |V_k| \angle \theta_k \\
 V_{\infty} = |V_{\infty}| \angle 0^0
 \]
Example: SMIB (cont.)

- Kalman Filter Elements

\[A = \frac{\partial g(\cdot)}{\partial x} = \begin{bmatrix} \frac{1}{2H} \left(\omega_0 \frac{|E||V_\infty|}{X'_d + X_T + X_L} \cos \delta \right) \Delta t & \Delta t \\ \end{bmatrix} \]

\[H = \frac{\partial h(\cdot)}{\partial x} \]

\[V = \frac{\partial h(\cdot)}{\partial v} \]
Extension to Multi-Machine Case

\[x_k = \begin{bmatrix} \delta_1^k \\ \omega_1^k \\ \vdots \\ \delta_m^k \\ \omega_m^k \end{bmatrix} \]

\[E_k = \begin{bmatrix} E_1^k \\ \vdots \\ E_m^k \end{bmatrix} \]

\[I_{Gk} = \begin{bmatrix} I_{g1}^k \\ \vdots \\ I_{gm}^k \end{bmatrix} \]

\[V_k = \begin{bmatrix} V_1^k \\ \vdots \\ V_m^k \end{bmatrix} \]

\[I_{gk}^i = \frac{E_k^i - V_k^i}{jX_{di}} \]

\[P_{ei} = \Re\{E_k^i I_{gk}^i*\} \]

\[\begin{bmatrix} I_{Gk} \\ 0 \end{bmatrix} = \begin{bmatrix} Y_{GG} & Y_{GL} \\ Y_{LG} & Y_{LL} \end{bmatrix} \begin{bmatrix} E_k \\ V_k \end{bmatrix} \]

\[V_k = -[Y_{LL}]^{-1}Y_{LG}E_k \]
DSE Comments

- More elaborated machine and controllers models have already been incorporated to DES with reasonable results
- Prediction Step can use electromechanical simulation techniques and software already available for simulation studies
- Parallel processing can speed up computations (Faster than Real Time)
- Allows the estimation of internal variables and parameters not accessible for measurements
- Use in wide area control requires relatively small PMU data delays
Final Remarks

- Synchrophasor information brought new ideas and problems to the state estimation area
- Conventional state estimation (static) may benefit from the accuracy and synchronization of PMU data but requires
 - Alteration in the available estimator code or
 - Methodology to combine conventional and PMU only estimates
- Dynamic state estimation may become a reality owing to the availability of high rates PMU data
 - Practical application areas are still not quite clear
 - Numerical difficulties with Kalman filter and derived algorithms have to be dealt with
 - Large computer requirements may be overcome by the use of very efficient electromechanical simulation software and parallel processing
Bibliography

5. B.L.D.C. Fonseca e D.M. Falcão, Implementação e Comparação de Resultados entre Estimadores de Estado Multiestágios, Submetido ao *XXIII SNPTEE*, outubro de 2015.

Thank You

Djalma M. Falcão
falcao@nacad.ufrj.br

COPPE/UFRJ
Programa de Engenharia Elétrica
Caixa Postal 68504
21941-972 Rio de Janeiro RJ
Brasil